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ABSTRACT

Calibration of an atmospheric lidar is often required due to
variations in the electro-optical system. Rayleigh fitting com-
monly performed may fail under various conditions. Tempo-
ral and spatial variations both affect lidar signals. We hence
opt for spatiotemporal analysis. We present a novel deep-
learning (DL) lidar calibration model based on convolutional
neural networks (CNN). We demonstrate our method on sim-
ulated data that mimics natural ground-based pulsed time-of-
flight lidar signals. Such an approach can better address mea-
surements with a poor signal-to-noise ratio (SNR) and pro-
vide a more frequent calibration.

Index Terms— Lidar calibration, CNN, DL

1. INTRODUCTION

A lidar [1] is affected by external factors and internal wear,
such as in-door temperature fluctuations affecting optical
alignment and laser energy. Consequently, lidar calibra-
tion is often required due to variations in the electro-optical
system. Calibration can be performed under stable condi-
tions, excluding times when the lidar’s cabin temperature
fluctuates rapidly, when fog or clouds appear, or during main-
tenance [2, 3]. This hinders lidar analysis.

A standard calibration method for valid periods employs
Rayleigh fitting [4]. This method searches for a reference
height–range in which aerosol–free conditions occur. At
these altitudes, aerosol scattering is negligible in comparison
with Rayleigh scattering. Rayleigh fitting includes spatial
and temporal averaging operations, leading to information
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loss and possible inaccurate estimations of the lidar constant
(LC). Additionally, this method may break during complex
atmospheric conditions, e.g., when several aerosol layers are
present [5]. Typically, this leads to searching higher altitudes
for a reference height–range. However, the SNR drops with
altitude. Poor SNR conditions, weak aerosol signals, and im-
perfect cloud detection can lead to incorrect reference heights
and, thus, inaccurate LC estimations.

Over a day, a lidar continuously samples vertical pro-
files in the atmosphere, creating a two-dimensional (2D)
spatiotemporal map. Hence, we hypothesize that analysis
should address dynamic phenomena of both the atmosphere
and the lidar system. This can be achieved by employing
spatiotemporal approaches. Here we demonstrate this con-
cept to benefit lidar calibration. Recent works [6, 7] suggest
employing sequential methods applied to consecutive profile
measurements. We advocate adopting powerful and highly
developed learning-based image processing. Such methods
may better overcome challenges posed by sparse or low-SNR
signals [8–10].

We develop a neural network (NN) model for an atmo-
spheric lidar calibration while employing CNN layers. A
CNN-based model applied to 2D lidar data can capture rich
spatiotemporal features, improve SNR, and reduce informa-
tion loss. Our goal is to avoid a prior reference height search
for lidar calibration. A second objective is developing a ro-
bust model by considering long- and short-term variations of
lidar measurements during training. A model meeting these
goals may provide a more frequent and accurate calibration.

Achieving these goals requires a large amount of an-
notated data. Yet, databases with frequent lidar calibration
are rare. Inspired by the recent contribution of synthesized
databases to DL methods in various disciplines, we suggest
augmenting data for our objective. Expert knowledge and
statistical information gained over the years enable us to
generate traceable data while mimicking natural lidar sig-
nals. We achieved this using the Atmospheric Lidar Data
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Augmentation (ALiDAn) framework [11], which follows the
physical model of ground-based pulsed time-of-flight lidars.
The generated data correspond to the elastic channels of the
PollyXT lidar [12] by TROPOS; further details in Section 3.1.
This work explores several NN configurations to achieve the
above joint goals. We examine the contribution of different
data sources that feed the model. We compare the model
for different wavelengths and seasons while testing various
hyper-parameters. Finally, we conclude with current results
on simulated data and discuss potential future directions.

2. LIDAR CALIBRATION - LEARNING MODEL

Let samples of a spatiotemporal lidar signal be arranged in
an array with dimensions of m × n, representing height and
time bins, respectively. Spatiotemporal particle attenuated
backscatter coefficient due to elastic interactions with the li-
dar laser beam is βATTN ∈ Rm×n

+ . Set diagonal matrices to
multiply βATTN: the height-dependent square values of alti-
tude bins and the overlap function set respectively the diago-
nals of R2 ∈ Rm×m

+ and O ∈ Rm×m
+ , and the time-dependent

LC values set the diagonal of PLC ∈ Rn×n
+ . Let PBG repre-

sent the background (BG) signal from sunlight scatter. Then
the array-based formalism of a spatiotemporal lidar signal, at
an arbitrary wavelength λ, following the model in [1], is

P = R−2OβATTNPLC +PBG ∈ Rm×n
+ [photons]. (1)

Let describe the supervised learning model of lidar cali-
bration. The model is fed by input X of size hIN × wIN × cIN,
set by cIN concatenated 2D maps each of size hIN × wIN.
Here hIN, wIN, and cIN are respectively the altitude, time,
and channel dimensions of X. We suggest that each sample
X be composed of a 2D lidar measurement and information
derived from additional sources to enable capturing natural
statistics. The suggested sources to form the input X are
presented in Fig. 1 and described next.

The first channel is the spatiotemporal range–corrected li-
dar measurement X1 = PRC = R2P[photons · km2]. To
avoid possible biases, we do not subtract PBG from lidar mea-
surements ; unlike a common lidar pre-processing phase. The
second channel represents the molecular attenuated backscat-
ter coefficient X2 = βmol

ATTN[
1

km·sr ]. Such input can be ob-
tained from meteorological measurements. The attenuated
backscattered signal is commonly divided by an aerosol trans-
mittance factor [2]; however, its prior–assessment may not al-
ways be available. Hence, we do not use the aerosol factor.

We examine two models, which differ by cIN. The first
model uses X = [X1,X2]. The second model adds a third
channel that represents background signal information. For
the latter, we suggest two different modes; using the averaged
BG photon counts Xv1

3 = PBG[photons], or the range cor-
rected BG signal Xv2

3 = R2PBG[photons · km2].
A lidar measurement P has a very large dynamic range.

To highlight information of interest, we suggest using a trans-
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Fig. 1. Suggested input sources to the model: (a) X1 = PRC

, (b) X2 = βmol
ATTN, (c) Xv1

3 = PBG, and (d) Xv2
3 = R2PBG

formation similar to gamma correction, common in image
processing. Let γx be a vector with a scalar value per chan-
nel. We define a point-wise power transform, at a rate set by
γx to each input channel before feeding to the NN

X̃ = Xγx . (2)

Let F be a model with a set of learned weights Θ, to esti-
mate the LC denoted as Ŷ, for a given input X, then

Ŷ = F(X̃,Θ). (3)

The weights Θ are calculated during a training process by
minimising the LC errors of model predictions F(X,Θ) rel-
ative to Y in a gradient decent manner

min
Θ

Loss(Y, Ŷ). (4)

Where Y is a vector containing the corresponding ground–
truth LC values of samples in X.

The model contains four CNN layers and two Fully Con-
nected (FC) layers, presented in Fig. 2(a). Each CNN hidden
layer calculates nH feature maps. The feature maps dimen-
sions’ are reduced in the time domain by 2 and in the height
domain by 4 until reaching a feature map of size hOUT ×
wOUT. Each CNN layer includes (I) 2D convolution kernels
that calculate a feature map of the layer. (II) Batch Norm
operation for standardizing the learned features. (III) A Rec-
tified Linear Unit (ReLU) activation function. (IV) Dropout
that randomly “shuts down” 10%−15% of the neurons during
training to avoid overfitting. (V) MaxPool, a pooling layer,
taking maximal values and reducing feature dimensionality.

3. EXPERIMENTS & RESULTS

3.1. Simulated Databases

Using the ALiDAn framework [11], we simulate natural li-
dar measurements over four months for two different sea-
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Fig. 2. (a) The lidar learning calibration model, for setting
hIN × wIN to be 2048× 60. (b) The tested configurations.

sons. Statistics for generation rely on data from the literature
and measurements collected in a field campaign [13] during
2016–2019; in which, a PollyXT lidar and an AERONET sun-
photometer were mounted on the rooftop of the Meyer Build-
ing (EE Faculty), Technion, Haifa, Israel. The simulated lidar
signals are derived from a Poissonian distribution to induce
natural statistics of photo–electron signals. ALiDAn allows
considering different overlap functions. Here we set it to 1;
we plan including overlap function in future work.

The initial database DI represents diurnal lidar simula-
tions for September–October 2017, simulating 61 days, with
a similar amount of data per λ ∈ [355, 532, 1064][nm]. The
extended database DE consists of DI and a similar simulated
period for April–May 2017. The latter database is challenging
since it contains two seasons and a variety of system values.
Data statistics are presented in Fig. 3(a).

3.2. Architecture settings

Each input size, defined as hIN × wIN, is 2048 × 60 pixels,
representing a 30–minute measurement of the atmosphere up
to an altitude of ∼ 15.6[km]. These settings correspond to the
analysis done by the PollyNet Processing Chain [3] by TRO-
POS. Thus, each simulated month in each database results in
4392 samples. According to the NN definitions previously
set, the last feature map is of size hOUT × wOUT = 8× 4.

We test two models, which differ by the number of chan-
nels cIN of the input layer, earlier presented in Section 2. We
conduct several experiments to determine which architecture
of the suggested models achieves the best results. Addition-
ally, for each model we test four different NN architectures
{A,B,C,D}. The architectures are presented in Fig. 2(b).

3.3. Training and Evaluation

Let s be a sample index in an input batch of size nB. The
training loss in each iteration is

Loss =
1

nB

nB∑
s=1

∣∣∣Ys − Ŷs

∣∣∣. (5)

LC values, which set Y, vary by time and wavelength, as
shown in Fig. 3(a); hence affecting the loss values. This may
result in a wide range of losses, making it challenging to com-
pare different wavelengths. Therefore, we use the Mean Ab-
solute Relative Error (MARE) on the validation set, to fairly
compare between the experiments

MARELoss =
1

nB

nB∑
s=1

∣∣∣Ys − Ŷs

∣∣∣
Ys

. (6)

Next we present the main highlights of an in-depth anal-
ysis that tests the effectiveness of the network by different
aspects.The results correspond for the validation set, which is
16% randomly selected from DI and DE. Additional experi-
ments settings are: nB = 32 and learning rate of 2× 10−3.

3.4. Results Analysis

Fig. 3(c) presents the average loss of the 1st model, test-
ing various power transforms, such as γ1 = 0.5 and γ2 =
±0.25,±0.5, for DI at all wavelengths. Power transform
yields better learning, reducing errors from 30% − 40% to
less than 10%. Testing all suggested models and configura-
tions on DI and DE achieved similar results.

Data statistics vary greatly between input channels and
between wavelengths. E.g., X1 values at 1064 are several
times lower than X1 at 355 and 532, and are several orders of
magnitude larger than X2 at 1064, as shown in the statistics
table in Fig. 3(a). Fig. 3(b) shows that separating the model
per wavelength improves accuracy and reduces the training
time. Moreover, model predictions improve by using different
γ values for each channel per wavelength. This is evident and
consistent in many experiments and is illustrated in Fig. 3(d).

Fig. 3(e) presents comparisons for λ = 355[nm], testing
the performance on long-term variations, i.e., DI vs. DE; and
BG data contribution, comparing the 1st vs. the 2nd models.
For the 1st model, training the NN on DI gained better results.
However, the contribution of the BG information, i.e., the 2nd

model, was more significant for training on DE; when using
Xv1

2 the second model reached a minimum error of 7%. Sim-
ilar comparisons were made for the rest of the wavelengths.

The NN performs best for λ = 355[nm]. It can be ex-
pected since typically, at 355[nm], the SNR is higher, and the
backscatter of air molecules is more significant. For 532[nm],
the NN reaches 10% error; here, the backscatter of aerosols
and air molecules have a similar order of magnitude. For
1064[nm], the NN reached a minimum error of 15%, which
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Fig. 3. (a) Statistics of the generated databases - DI, and
DE. (b) Wavelength separation comparison for DI: left - av-
erage MARELoss, right - average train time. (c) Compari-
son of NN configuration and power transform for DI at all
wavelengths. (d) Average MARELoss of the 1st model for
γ1 = 0.5 and varying γ2 values, tested on DI. (e) Comparing
the background contribution at 355[nm] and configuration D,
between the generated databases - DI, and DE.

may be explained by typical low SNR conditions; due to a
higher sensor sensitivity and atmospheric absorption of water
particles, weakening the backscatter signal at 1064[nm].

4. DISCUSSION & CONCLUSIONS

Overall, our model achieves 7% − 15% MARELoss on the
simulated validation set, showing great potential to improve
current lidar calibrations [2, 3]. We now consider a transfer
learning phase with additional statistical variations, includ-
ing various overlap functions and adapting the suggested ap-
proach to raw measurements.
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